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LETTER TO THE EDITOR

On the spectrum of the Schrodinger operator for some
many-particle systems

Sh A Alimovt

Institut fiir Physik, Universitat Mainz, Mainz, Federal Republic of Germany
Received 9 January 1992

Abstract. For the N-Coulomb particle Schrédinger operator with central charge Z there
is a well known condition of stability N <2Z + 1 obtained by Lieb. This estimate is extended
to operators with slowly decreasing potentials.

In this letter we shall describe the lower bound of the spectrum of operators in Ly(R*™)
of the form
N
Hy=-3% (A, +ZV(x)+ Y V(x—x) Z=>0
=1 J<k
i.e. Hy is the Hamiltonian of a non-relativistic quantum system (e.g. of an N-electron
atom if the potentials are Coulombic). We shall suppose that

V(x)=b(|x})/|x| xe R? x#=0 (1)

b being a positive, non-decreasing function such that V(x) is monotonously decreasing
when |x| grows.

Let Ey = En(Z) be the lowest eigenvalue of Hy. In the case of Coulomb potentials
{ b = constant) it is well known (see [1]) that Ey = E5,, and there exists a critical
this means that the nucleus with charge Z cannot hold more than N, electrons in
the bound state (see [2-4]).

We shall extend this result to potentials of a more general type.

Theorem 1. Let b"(r)<0. Then N,z <2Z+1
For b =constant this result was obtained in [4]. We shall prove this theorem in a

sequence of lemmas.

Lemma 1. Let g(x)e C*(R?), g>0. Then for any fe C5(R’) the equality

L, q(x)f (x)(—8f(x)) dx = f q-‘|V(qf)|=dx+L £ (I TAg -7 (7g)] dx
holds. The proof follows from Green’s formula.
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Corollary. Let g Ag=2(Vg)*. Then (qf, —Af)=0.
Lemma 2. Let the potential V be defined by (1) and 5"(r) < 0. Then for any fe C5(R?)
we have .

(V7' -Af)=0.
Proof. Let g(x)=|x|/b(|x]). It is easy to check that

g Aq—2(Vg)*=—|x/b~*b"(x) = 0.
Lemma 3. Let d(t)=1/b(t). Then the inequality

dA+p)<d(A)+d(p)
holds for every A >0 and u > 0. The proof is trivial.
Corolary. For ail xe R® and ye R®, then V{x+y)< V7 {x}+ V i(y).
Proof of theorem 1. We suppose that Ey < Ex_, and denote by H%,_, the Hamiltonian
of the system without particle x,, i.e. for any fixed k {I=<k=< N)

HN = H;‘V—l - Ak - ZV(xk) + .Ek V(xj - xk).

J

Let Hyf=E,f and (f,f)=1. Then
0=(V~(x)f, (Hx —En)f)
= (V7' (xS, (Hao = BN = (VT (%) S, Aif)

—Z+ ( V' (), ,~§k Vix _x")f)'

Taking into account the inequalities Hy_,= Ey_,> Ex we have, by applying
lemma 2,
(VX)L L Vix,—x)f)<Z
Hence
L T (V) + V) Vk - X}, f) <2ZN

i k#j

and by applying the corollary of lemma 3 we have

T ¥ 1<2ZN
J ke
Consequently N(N —1}<2ZN and N-1<2Z O
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