On the spectrum of the Schrodinger operator for some many-particle systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L615
(http://iopscience.iop.org/0305-4470/25/10/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:27

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# On the spectrum of the Schrödinger operator for some many-particle systems 

Sh A Alimov $\dagger$<br>Institut für Physik, Universität Mainz, Mainz, Federal Republic of Germany

Received 9 January 1992


#### Abstract

For the $N$-Coulomb particle Schrödinger operator with central charge $\boldsymbol{Z}$ there is a well known condition of stability $N<2 Z+1$ obtained by Lieb. This estimate is extended to operators with slowly decreasing potentials.


In this letter we shall describe the lower bound of the spectrum of operators in $L_{2}\left(R^{3 N}\right)$ of the form

$$
H_{N}=-\sum_{j=1}^{N}\left(\Delta_{j}+Z V\left(x_{j}\right)\right)+\sum_{j<k} V\left(x_{j}-x_{k}\right) \quad Z>0
$$

i.e. $H_{N}$ is the Hamiltonian of a non-relativistic quantum system (e.g. of an $N$-electron atom if the potentials are Coulombic). We shall suppose that

$$
\begin{equation*}
V(x)=b(|x|) /|x| \quad x \in R^{3} \quad x \neq 0 \tag{1}
\end{equation*}
$$

$b$ being a positive, non-decreasing function such that $V(x)$ is monotonously decreasing when $|x|$ grows.

Let $E_{N}=E_{N}(Z)$ be the lowest eigenvalue of $H_{N}$. In the case of Coulomb potentials ( $b=$ constant) it is well known (see [1]) that $E_{N} \geqslant E_{N+1}$ and there exists a critical number $N_{\max }$ such, that $E_{N}=E_{N_{\max }}$ where $N \geqslant N_{\max }$. From the physical point of view this means that the nucleus with charge $Z$ cannot hold more than $N_{\text {max }}$ electrons in the bound state (see [2-4]).

We shall extend this result to potentials of a more general type.
Theorem 1. Let $b^{\prime \prime}(r) \leqslant 0$. Then $N_{\text {max }}<2 Z+1$.
For $b=$ constant this result was obtained in [4]. We shall prove this theorem in a sequence of lemmas.

Lemma 1. Let $q(x) \in C^{2}\left(R^{3}\right), q>0$. Then for any $f \in C_{0}^{\infty}\left(R^{3}\right)$ the equality $\int_{R^{3}} q(x) f(x)(-\Delta f(x)) \mathrm{d} x=\int_{R^{3}} q^{-1}|\nabla(q f)|^{2} \mathrm{~d} x+\int_{R^{3}}|f(x)|^{2}\left[\frac{1}{2} \Delta q-q^{-1}(\nabla q)^{2}\right] \mathrm{d} x$ holds. The proof follows from Green's formula.

Corollary. Let $q \Delta q \geqslant 2(\nabla q)^{2}$. Then $(q f,-\Delta f) \geqslant 0$.
Lemma 2. Let the potential $V$ be defined by (1) and $b^{\prime \prime}(r) \leqslant 0$. Then for any $f \in C_{0}^{\infty}\left(R^{3}\right)$ we have

$$
\left(V^{-1} f,-\Delta f\right) \geqslant 0
$$

Proof. Let $q(x)=|x| / b(|x|)$. It is easy to check that

$$
q \Delta q-2(\nabla q)^{2}=-|x|^{2} / b^{-3} b^{\prime \prime}(x) \geqslant 0 .
$$

Lemma 3. Let $d(t)=t / b(t)$. Then the inequality

$$
d(\lambda+\mu) \leqslant d(\lambda)+d(\mu)
$$

holds for every $\lambda>0$ and $\mu>0$. The proof is trivial.
Corollary. For ail $x \in R^{3}$ and $y \in \bar{R}^{3}$, then $\bar{V}^{-1}(x+y) \leqslant \bar{V}^{-1}(x)+\bar{V}^{-1}(y)$.
Proof of theorem 1. We suppose that $E_{N}<E_{N-1}$ and denote by $H_{N-1}^{k}$ the Hamiltonian of the system without particle $x_{k}$, i.e. for any fixed $k(l \leqslant k \leqslant N)$

$$
H_{N}=H_{N-1}^{k}-\Delta_{k}-Z V\left(x_{k}\right)+\sum_{j \neq k} V\left(x_{j}-x_{k}\right)
$$

Let $H_{N} f=E_{N} f$ and $(f, f)=1$. Then

$$
\begin{aligned}
0=\left(V^{-1}\left(x_{k}\right) f\right. & \left.f\left(H_{N}-E_{N}\right) f\right) \\
= & \left(V^{-1}\left(x_{k}\right) f,\left(H_{N-1}^{k}-E_{N}\right) f\right)-\left(V^{-1}\left(x_{k}\right) f, \Delta_{k} f\right) \\
& -Z+\left(V^{-1}\left(x_{k}\right) f, \sum_{j \neq k} V\left(x_{j}-x_{k}\right) f\right) .
\end{aligned}
$$

Taking into account the inequalities $H_{N-1} \geqslant E_{N-1}>E_{N}$ we have, by appiying lemma 2,

$$
\left(V^{-1}\left(x_{k}\right) f, \sum V\left(x_{j}-x_{k}\right) f\right)<Z
$$

Hence

$$
\sum_{j} \sum_{k \neq j}\left(\left(V^{-1}\left(x_{k}\right)+V^{-1}\left(x_{j}\right)\right) V\left(x_{k}-x_{j}\right) f, f\right)<2 Z N
$$

and by applying the corollary of lemma 3 we have

$$
\sum_{j} \sum_{k \neq j} 1<2 Z N .
$$

Consequently $N(N-1)<2 Z N$ and $N-1<2 Z$.
This work was supported by the Deutsche Forschungsgemeinschaft, project no 438 113-124-0. I am grateful to Professor E Alt for his hospitality at the University of Mainz and for his support.

## References

[1] Simon B et al 19887 Schrödinger Operaiors (Beriin: Sp̄ringetr)
[2] Ruskai M B 1982 Absence of discrete spectrum in highly negative ions Commun. Math. Phys. 82 457-69
[3] Sigal I M 1982 Geometric methods in the quantum many-body problem. Non-existence of very negative ions Commun. Math. Phys. 85 309-24
[4] Lieb E 1984 Bound on the maximum negative ionization of atoms and molecules Phys. Rev. A 29 3018-28

